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Abstract We study zero-range processes which are known to exhibit a condensation tran-
sition, where above a critical density a non-zero fraction of all particles accumulates on a
single lattice site. This phenomenon has been a subject of recent research interest and is
well understood in the thermodynamic limit. The system shows large finite size effects, and
we observe a switching between metastable fluid and condensed phases close to the critical
point, in contrast to the continuous limiting behaviour of relevant observables. We describe
the leading order finite size effects and establish a discontinuity near criticality in a rigorous
scaling limit. We also characterise the metastable phases using a current matching argument
and an extension of the fluid phase to supercritical densities. This constitutes an interesting
example where the thermodynamic limit fails to capture essential parts of the dynamics,
which are particularly relevant in applications with moderate system sizes such as traffic
flow or granular clustering.

Keywords Zero range process · Condensation · Metastability · Finite size effects · Large
deviations

1 Introduction

Zero-range processes are stochastic particle systems with no restriction on the number of
particles per site and with jump rates that depend only on the occupation of the departure
site. This simple zero-range interaction leads to a product structure of the stationary dis-
tributions [1, 35]. These processes have been a focus of recent research interest since they
can exhibit a condensation transition. This is the case for space homogeneous jump rates
g(n) that decay asymptotically with the number of particles n. A prototypical model with
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g(n) = 1 + b
nγ for n = 1,2, . . . has been introduced in [12], where condensation occurs for

parameter values γ ∈ (0,1), b > 0 or γ = 1, b > 2. If the particle density ρ exceeds a
critical value ρc, the system phase separates into a homogeneous background with density
ρc and a condensate, where the excess particles accumulate on a single randomly located
lattice site. This transition has been established on a rigorous level in a series of papers,
in the thermodynamic limit [3, 4, 21, 26], as well as on a finite system as the total num-
ber of particles diverges [16]. Dynamic aspects of the transition such as equilibration and
coarsening [17, 21] and the stationary dynamics of the condensate [18] are well understood
heuristically, for the latter first rigorous results have been achieved recently [6, 7]. Findings
for the zero-range process could be applied to understand condensation phenomena in a
variety of nonequilibrium systems (see [13] and references therein), as well as providing a
generic model of domain wall dynamics and a criterion for phase separation using a mapping
to one-dimensional exclusion systems [27]. The process continues to be of interest, recent
work on variations of the model includes mechanisms leading to more than one condensate
[29, 34, 36], or the effects of memory in the dynamics [23].

While most of the results so far consider the thermodynamic limit, finite size effects in
the model with jump rates g(n) and γ = 1 have been investigated in [15, 32] using saddle
point methods, and in [2] for a variant of the model with a single defect site. In the con-
densed phase region, finite systems are found to exhibit a large overshoot of the stationary
current above its value in the thermodynamic limit. In this paper we examine this phenom-
enon in detail for all possible values of the parameter γ ∈ (0,1]. We find the leading order
finite size effects that describe the current overshoot by continuing the homogeneous (fluid)
phase above the critical density and characterizing the condensed phase by a current match-
ing argument. For γ < 1, the main focus of this article, finite systems exhibit a metastable
switching behaviour between the two phases, which is prevalent in Monte Carlo simulations
for a wide range of parameters. To capture this phenomenon we examine the system in a
scaling limit and derive a rate function, which exhibits a double well structure, describing
the distribution over the bulk density (the bulk density serves as an order parameter to distin-
guish the fluid and condensed phases). This way we rigorously establish the discontinuous
behaviour on the critical scale, even though the bulk density is a continuous function in the
thermodynamic limit. This is shown to be in agreement with recent results on the conden-
sation transition at the critical density [3]. Based on the exact scaling limit, we can also
predict the lifetime of the metastable phases for large finite systems by a heuristic random
walk argument.

In general, finite system size can lead to effective long-range interactions and non-
convexity of thermodynamic potentials, as has been observed for various models (see for
example [5, 25] and references therein). For the zero-range process it has been shown that
for simple size-dependent jump rates metastability effects can be manifested even in the
thermodynamic limit [20], and large crossover effects in these systems have already been
observed in [12]. The finite-size behaviour of the zero-range process considered here also
exhibits the above non-convexity, with the additional feature of a sharp crossover between
a putative fluid and condensed phase in the non-convex part. This leads to a metastable
switching behaviour which disappears in the thermodynamic limit, intriguingly contradict-
ing the usual expectation of finite systems to behave in a smoother fashion than the limiting
prediction. The onset of phase coexistence at criticality is a classical question of general in-
terest in phase separating systems, see for example [9, 10] for the formation of equilibrium
droplets in the Ising model which also form suddenly on a critical scale. Rigorous results
on metastability regarding the dynamics of the condensate in zero-range processes have also
been a subject of recent research interest [6–8], and our work provides a contribution in that
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direction and new insight in the mechanisms of condensate dynamics on finite systems. This
is explained in more detail in the discussion.

A proper understanding of the metastability phenomenon exhibited by zero-range
processes on finite systems is also of particular importance for recent applications with mod-
erate system sizes. Clustering phenomena in granular media can be described by zero-range
processes (see [37, 39] and references therein), and metastable switching between homo-
geneous and condensed states has been observed experimentally [38, 40]. In the spirit of
the mapping introduced in [27] the zero-range process with jump rates g(n) has also been
applied as a simplified traffic model [28, 30], where condensation corresponds to the oc-
curance of a traffic jam. A key feature of traffic models is the existence of a broad range of
densities over which metastability between free flowing and jammed states is observed (see
for example [41] and references therein). The relevance of this study in application serves
as a motivation, but the aim of the paper is a general understanding of finite size effects and
their implications for a generic class of zero-range processes, rather than a detailed analysis
of particular cases.

The paper is organized as follows: In Sect. 2 we introduce the model and summarise pre-
vious results on stationary distributions and the thermodynamic limit. In Sect. 3 we present
relevant observations on finite systems which we later study in detail. In Sect. 4 we give
preliminary results and a heuristic description of the finite size effects. This motivates our
main results presented in Sect. 5, where we rigorously establish metastability in a suitable
scaling limit. In Sect. 6 we connect these results to the lifetimes of the metastable phases,
and end with a short discussion in Sect. 7.

2 Stationary Measures and the Thermodynamic Limit

2.1 The Zero Range Process

We consider a one dimensional lattice of L sites �L = {1,2, . . . ,L} with periodic bound-
ary conditions. Let ηx ∈ N0 = {0,1,2, . . .} be the number of particles on site x ∈ �L. The
state of the system is described by η = (ηx)x∈�L

belonging to the state space of all particle
configurations �L = N

�L

0 . Particles jump on the lattice at a rate that depends only on the
occupation number of the departure site. A particle jumps off site x after an exponential
waiting time with rate g(ηx) and moves to a target site y according to the probability dis-
tribution p(y − x). We assume that p is of finite range, i.e. p(z) = 0 if |z| > R for some
R > 0, normalised and irreducible on �L. The main results of the paper focus on the jump
rates g : N0 → R+ of the form

g(n) =
{

1 + b
nγ if n > 0

0 if n = 0
(1)

with γ ∈ (0,1) and b > 0. A discussion on extending these results to the case γ = 1 and
b ≥ 3 and other lattice geometries can be found in Sect. 7. These jump rates were first
introduced by Evans [12] and represent a fairly general class of functions of interest for the
condensation transition.

The infinitesimal generator of the process acting on suitable test functions f is given by

(Lf )(η) =
∑

x,y∈�L

g(ηx)p(y − x)
(
f (ηx,y) − f (η)

)
, (2)



Finite Size Effects and Metastability in Zero-Range Condensation 849

where η
x,y
z = ηz − δ(z, x) + δ(z, y) and δ is the Kronecker delta [1, 31]. The process con-

serves the total number of particles in the system, so �L can be partitioned into invariant
subsets �L,N = {η ∈ �L|∑x∈�L

ηx = N} on which the zero-range process is a finite state
irreducible Markov process. The process can also be defined on an infinite lattice under
certain constraints, for details see [1, 24].

2.2 Stationary Measures

The following summarises well known results on stationary measures of the zero-range
process, for details see [1, 12, 35]. The zero-range process with generator (2) has a family of
stationary homogeneous product measures on �L which we refer to as the grand canonical
ensemble. These measures are parameterized by a fugacity φ and are of the form,

νL
φ [η] =

∏
x∈�L

νφ[ηx] where νφ[n] = 1

z(φ)
w(n)φn. (3)

These exist for all φ ∈ [0, φc) where φc is the radius of convergence of the (single site)
partition function

z(φ) =
∞∑

k=0

w(k)φk. (4)

The stationary weights w are given by w(0) = 1 and

w(n) =
n∏

k=1

g(k)−1, n > 0. (5)

In the grand canonical ensemble the expected particle density is a function of φ and is
given by,

R(φ) := Eνφ
[η1] =

∞∑
k=0

kνφ(k) = φ ∂φ log z(φ), (6)

which is strictly increasing and R(0) = 0. The critical density is defined by ρc =
limφ↗φc R(φ) ∈ (0,∞], and condensation occurs if ρc < ∞, as explained below.

The expected jump rate off a site is proportional to the average stationary current or, in
case the first moment

∑
z zp(z) vanishes, to the diffusivity. Therefore for simplicity, in the

rest of this paper, current will refer to the average jump rate off a site, which is clearly site
independent under a stationary distribution. In the grand canonical ensemble the current is
simply given by the fugacity φ,

jφ := Eνφ
[g(ηx)] = 1

z(φ)

∞∑
n=0

g(n)w(n)φn = φ, (7)

which follows directly from the form of the stationary weights w(n), (5).
For fixed L and N the process restricted to �L,N is ergodic, the corresponding unique

stationary measures belong to the canonical ensemble and are given by

πL,N [η] := νφ[η|SL(η) = N ] where SL(η) =
∑
x∈�L

ηx. (8)
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These measures are independent of φ and are given explicitly by

πL,N [η] = 1

Z(L,N)

∏
x∈�L

w(ηx)δ

(∑
x

ηx,N

)
,

where the canonical partition function is

Z(L,N) =
∑

η∈�L,N

∏
x∈�L

w(ηx). (9)

In the canonical ensemble the form of the stationary weights, (5), imply that the average
current is given by a ratio of partition functions,

jL,N := EπL,N
[g(ηx)] = Z(L,N − 1)

Z(L,N)
. (10)

For the jump rates (1) the single site weights asymptotically decay as a stretched expo-
nential

w(n) ∼ e
− b

1−γ
n1−γ

for γ ∈ (0,1). (11)

Throughout the paper we use ‘∼’ to mean asymptotically proportional and ‘�’ to mean
asymptotically equal. It follows that φc = 1 and the critical density and the variance are
finite,

ρc := R(1) < ∞, σ 2
c := Eνφc

[η2
x] − ρ2

c < ∞.

R is strictly increasing, so invertible on [0, φc] = [0,1] and we denote its inverse by


̃(ρ) = R−1(ρ). (12)

In this way we can parameterise the grand canonical measures by densities ρ ∈ [0, ρc].

2.3 Thermodynamic Limit

In this section we summarise known results on the condensation transition in the zero-range
process. It has been established in [12] and rigorously in [19, 21] as a continuous phase
transition in the thermodynamic limit, as particle number N and lattice size L tend to infin-
ity such that N/L → ρ. It was shown that all finite dimensional marginals of the canonical
measure πN,L converge to the grand canonical measure with density ρ if ρ ≤ ρc. If ρ > ρc

then there is no grand canonical measure with density ρ and all finite dimensional marginals
of πL,N converge to the grand canonical measure with density ρc. This result on the equiv-
alence of ensembles holds in terms of weak convergence (for details see [19]) and can be
summarised as

πL,N → ν
(ρ) as L → ∞ and N/L → ρ, (13)

where


(ρ) =
{


̃(ρ) if ρ < ρc,

φc if ρ ≥ ρc.
(14)
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This implies that for ρ > ρc the excess particles in the system condense on a set of vanishing
volume fraction. The result has been strengthened in [3, 4] (with partial results already
in [26]), showing that the condensate typically resides on a single lattice site. Denoting the
size of the maximum component ML(η) = maxx∈�L

ηx this can be written as

1

L
ML

πL,N−−→
{

0 if ρ ≤ ρc,

ρ − ρc if ρ > ρc.
(15)

Here the notation denotes converges in probability with respect to πL,N ,

πL,N

[∣∣∣∣ 1

L
ML − (ρ − ρc)

∣∣∣∣ > ε

]
→ 0 for all ε > 0.

It will often be useful to express this result also in terms of the behaviour of the bulk of the
system. We denote the total number of particles outside of the maximally occupied site by
S

bg
L (η) = N − ML(η). The background density converges as

1

L − 1
S

bg
L (η)

πL,N−−→
{

ρ if ρ ≤ ρc,

ρc if ρ > ρc.
(16)

A similar result holds for the behaviour of the canonical current in the thermodynamic limit.
With (7) the convergence in (13), (14) implies that

jL,N → 
(ρ) as L → ∞ and N/L → ρ. (17)

So the current and the background density are both continuous with respect to the total
system density in the thermodynamic limit. Also both are strictly increasing up to ρc and
constant for ρ > ρc. If N/L → ρ ≤ ρc the system is said to be in the fluid phase region and
if N/L → ρ > ρc the system is in the condensed phase region.

The thermodynamic entropy is defined by the Legendre transform

s(ρ) = sup
φ∈[0,φc)

(log z(φ) − ρ logφ)

= log z(
(ρ)) − ρ log
(ρ), (18)

where 
(ρ) is given by (14). It has been shown in [21] that the canonical partition function
converges to the thermodynamic entropy, i.e.

1

L
logZ(L,N) → s(ρ) as L → ∞ and N/L → ρ. (19)

3 Observations on a Finite Systems

In this section we present results obtained from exact numerics and Monte Carlo simulations
in the canonical ensemble. We can calculate the canonical current given by (10) by making
use of the following recursion relation for the canonical partition functions,

Z(L,N) =
N∑

k=0

w(k)Z(L − 1,N − k). (20)
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Fig. 1 (Color online) Finite size effects and current overshoot for γ = 0.5 and b = 4. Left: The canonical
current for various system sizes as a function of the density ρ = N/L are plotted. The dashed black line
shows the thermodynamic current as a function of the system density ρ. Right: The overshoot region for
L = 1000 showing the two distinct currents measured from Monte Carlo simulations for various densities
near the maximum current

Similarly we can calculate the canonical distribution of the maximum site occupation ML.
To this end we define the cut-off canonical partition function which counts configurations
for which ML(η) ≤ m,

Q(L,N,m) =
min{m,N}∑

k=0

w(k)Q(L − 1,N − k,m). (21)

This allows us to calculate

πL,N [ML = m] = Q(L,N,m) − Q(L,N,m − 1)

Z(L,N)
, (22)

for all m ∈ N (the case m = 0 is trivial). We often consider the equivalent formulation using
background densities

πL,N [ML = m] = πL,N

[
S

bg
L

L − 1
= ρbg

]
where ρbg = N − m

L − 1
.

This is more useful for illustrations and is more intuitive, since the background density char-
acterises all but a single lattice site, while the formulation involving ML is more convenient
for computations since it avoids issues with non-integer numbers. Therefore keeping both
formulations in parallel is the best option for a concise presentation of our results.

On large finite systems we observe significant finite size effects above the critical den-
sity ρc , Fig. 1 shows the typical behaviour of the canonical current. Below ρc the current
is very close to the thermodynamic limit result even on relatively small systems (L ∼ 100)
and the leading order finite size effects can be understood immediately from the proof of
the thermodynamic limit result [21]. However the canonical current and background density
significantly overshoot their critical values see Fig. 1 and Fig. 2. An overshoot has been
observed before for systems containing a single site defect [2] for γ = 1. For γ < 1 the
current increases monotonically with density ρ = N/L, in a way that appears to vary only
very slightly with system size, up to some size dependent maximum current at ρtrans(L).
For ρ < ρtrans(L) the background density in the system is typically very close to ρ (Fig. 2).
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Fig. 2 (Color online) Finite size effects for the background density for γ = 0.5, b = 4 and L = 1000. Left:
The expected value of the background density. The dashed black line shows the thermodynamic limit result.
Right: Distribution of the background density at three system densities shown by corresponding dash-dotted
lines on the left, calculated exactly using (22). The position of local maxima of the distributions are marked
on both plots (∗ for ρ = 0.6, × for ρ = 0.7, ◦ for ρ = 0.8). The high background density maximum at ρ = 0.8
occurs with extremely low probability and is off the scale

Fig. 3 (Color online) Switching dynamics for γ = 0.5, b = 4 and L = 1000 taken at
N/L = ρtrans(1000) = 0.695. Left: (Bottom) Current against time from Monte Carlo simulations, cal-
culated by taking the average number of jumps in the system over small time windows. The black line
indicates the transition between the two putative phases. (Top) The location of the maximum does not change
until the system is fluid. Right: Cumulative tail of the distribution of waiting times in the putative fluid phase
on a log linear scale. The solid line shows an exponential fit

For a fixed system size L we associate the region ρ < ρtrans(L) with a putative fluid phase.
Close to ρ = ρtrans(L) there is an abrupt decrease in the current and background density. For
ρ > ρtrans(L) the current and background density are both decreasing in ρ and tend to their
respective critical value as ρ → ∞. We associate the region ρ > ρtrans(L) with a putative
condensed phase since the increasing density is entirely taken up by a large number of par-
ticles condensing on a single lattice site. The size of the effective fluid overshoot increases
with increasing b and with decreasing γ , and is already very pronounced at γ = 0.5, b = 4.

For ρ = N/L close to ρtrans(L) we observe that the canonical distribution over back-
ground densities has two maxima of similar magnitude (Fig. 2) and Monte Carlo simulations
show that the system switches between the two putative phases. Figure 3 shows the typical
behaviour of the current close to ρtrans(L) as a function of time, the putative phases can be
clearly distinguished by the current. For ρ ≈ ρtrans(L) in the condensed phase the location
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of the condensate does not change, while its position fluctuates heavily in the fluid phase,
supporting the fact that the particles are distributed homogeneously.

The empirical distribution of waiting times in the two putative phases is very close to an
exponential (Fig. 3 right). This suggests that the switching process is approximately Markov-
ian over the range of parameters and jump distributions observed, and constitutes a genuine
metastability phenomenon. The rate of the switching depends on the parameters b and γ as
well as the jump distribution p(x), which will be discussed in Sect. 6 in more detail.

4 Preliminary Results

4.1 Heuristics and Current Matching

As suggested by the form of the current overshoot in Fig. 1, our approach is to approximate
the putative fluid phase by extending the grand canonical current above φc , which we achieve
by means of a cut-off grand canonical measure. Since the total number of particles is fixed
canonically to N the system can not explore states where any single site contains more
than N particles. We therefore expect the distribution of particles in the background under
the canonical measure will always be closer (in any reasonable sense) to a grand canonical
measure, with some suitably chosen cut-off and fugacitiy chosen to fix the correct density
of particles, than it is to the unconditioned distribution. For cut-off m ∈ N the cut-off grand
canonical measures are defined by single site marginals with support on {0,1, . . . ,m},

νφ,m[ηx = n] := νφ[ηx = n|ηx ≤ m]

= 1

zm(φ)
w(n)φn for n ≤ m (23)

where the normalisation is given by the finite sum

zm(φ) =
m∑

k=0

w(k)φk. (24)

These measures are well defined for all φ ∈ (0,∞) and the current is given by

Eνφ,m
[g(ηx)] = φ

(
1 − w(m)φm

zm(φ)

)
. (25)

Also the average density in the cut-off ensemble

Rm(φ) := Eνφ,m
[ηx] = 1

zm(φ)

m∑
k=0

kw(k) (26)

is a strictly increasing function from [0,∞) onto [0,∞) and so we denote its inverse


m(ρbg) := R−1
m (ρbg). (27)

To a first approximation we estimate the current in the putative fluid phase using (25),

jL,N ≈ 
N(ρ) (28)
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Fig. 4 (Color online) Current
estimates above the critical point
ρ > ρc and jL,N > φc , for
L = 1000, γ = 0.5 and b = 4.
The fluid approximation (28) and
the current matching (29) agree
well with canonical numerics and
the metastable branches from
Monte Carlo simulations (cf.
Figs. 1 and 3)

under the assumption that (1 − w(N)φN/zN(φ)) ≈ 1 for values of N under consideration.
This approximation is shown in Fig. 4 by the blue dashed line for γ = 0.5, b = 4 and a
system size of L = 1000. The approximation is extremely close to the canonical current for
ρ < ρtrans(L) and for ρ ≈ ρtrans(L) is in good agreement with the empirically measured fluid
currents from Monte Carlo simulations. We demonstrate in the Sect. 5 that this estimate can
be improved by choosing the cut-off more carefully.

We approximate the current in the putative condensed phase by a current matching argu-
ment, a similar heuristic argument has been given before in [28]. The existence of a stable
condensate implies that the average rate of particles exiting the condensate must be equal
to the average rate of particles entering it. Conditioned on the occupation of the condensate
ML = m, the exit rate is simply g(m) while the entry rate is well approximated by the sta-
tionary current in the background. This is assumed to be in a putative fluid phase described
by νφ,m, which leads to the current matching condition.


m(ρbg) = g(m) where ρbg = N − m

L − 1
. (29)

The lower branch of solutions to this equation define the condensed current approximation
(Fig. 4 red dashed line). These are extremely close to the canonical current for ρ > ρtrans(L)

and for ρ ≈ ρtrans(L) are in good agreement with the empirically measured condensed cur-
rents from Monte Carlo simulations.

4.2 Thermodynamic Limit Rate Function

In the thermodynamic limit we expect the existence of a rate function Iρ that describes the
asymptotic probability of observing a background density ρbg ∈ (0, ρ). Precisely, we will
consider the limit

N,L,m → ∞ such that N/L → ρ and
m

L
→ ρ − ρbg, (30)

and expect that

πL,N [ML = m] ∼ e−LIρ(ρbg). (31)
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To derive this we define the following function for finite systems

IL,N (m) = − 1

L
logπL,N [ML = m], (32)

which can be written as

IL,N (m) = − (L − 1)

L

(
log zm(φ) − N − m

L − 1
logφ

)

− 1

L
logw(m) + 1

L
logZ(L,N) − 1

L
logL

− 1

L
logνL−1

φ,m [SL−1 = N − m]+O(e
− −b

1−γ
m1−γ

). (33)

This is derived in Appendix A.1 and is valid for any φ ∈ (0,∞). The first line in (33)
resembles the thermodynamic entropy of the background (cf. (18)), the first term on the
second line is the contribution due to the maximum occupied site. The second term on the
second line is the canonical normalisation and is independent of m. All the other terms will
vanish in the limit (30) and we get the following result.

Theorem 1 In the limit (30) IL,N (ρbg) converges for all ρbg ∈ [0, ρ) as

Iρ(ρbg) := lim
L→∞

IL,N (m) = s(ρ) − s(ρbg), (34)

where s is the thermodynamic entropy given by (18). So for ρ > ρc (supercritical case),
Iρ(ρbg) = 0 for each ρbg ≥ ρc (see Fig. 5).

Proof The proof follows directly from previous results on the equivalence of ensembles, for
details see [21]. It has been shown that

1

L
logZ(L,N) → s(ρ). (35)

We use (33) and choose φ = 
(ρbg) as defined by (14). The cutoff m � N − ρbg(L − 1)

diverges linearly in L for all ρbg ∈ [0, ρ). It follows that for φ ≤ φc we have zm(φ) → z(φ),
and therefore with (18)

log zm(
(ρbg)) − N − m

L − 1
log
(ρbg) → s(ρbg). (36)

It follows from the asymptotic behaviour of the single site weights (11) that 1
L

logw(m) →
0, and the terms 1

L
logL and O(e

− −b
1−γ

m1−γ

) also vanish in the limit (30). It remains to show
that 1

L
logνL−1


(ρbg),m[SL−1 = N − m] → 0. In the case ρbg ≤ ρc we have 
(ρbg) ≤ φc and the
first and second moments of ν
(ρbg),m converge to those of ν
(ρbg). The local limit theorem
for triangular arrays (Theorem 1.2 in [11]) covers the sum, SL, of independent random vari-
ables whose distribution depends on the number of terms L, which is the case here via the
cut-off m. Convergence of the first two moments then implies

νL−1

(ρbg),m[SL−1 = N − m] ∼ 1√

L
, (37)
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Fig. 5 (Color online)
Thermodynamic limit rate
function for a fixed system
density ρ = 0.75 with γ = 0.5
and b = 4. Iρ(ρbg) is shown by a
solid black line. The dashed lines
show IL,N (m) against
ρbg = (N − m)/(L − 1) with
N/L = 0.75, for several values of
L calculated by exact numerics
using (22). Note convergence to
Iρ(ρbg) (solid black) is slow and
initially non-monotonic above ρc

and the result follows immediately. The case ρbg > ρc can be reduced to the previous case
following [21], by arranging the excess mass N − ρc(L − 1) in the background among a
finite number of sites so that each site contains at most m particles. This provides a sub-
exponential lower bound for νL−1

φc,m
[SL−1 = N − m] which completes the proof. �

Previous results in the thermodynamic limit imply that for N/L → ρ > ρc the back-
ground density converges to ρc (see Sect. 2.3, (16)). Naturally, the thermodynamic limit
result gives no indication of the sharp transition from fluid to condensed putative phases or
the metastable switching observed on large finite systems. For ρ > ρc the system will appear
to be condensed for sufficiently large L, since ρtrans(L) ↘ ρc as L → ∞ (see Fig. 1). There-
fore the leading order finite size effects of Theorem 1 do not describe the sharp transition
or the metastability, as can be seen in Fig. 5. The apparent double well structure of IL,N is
less pronounced for higher L, and the location of the global minimum shifts towards ρc .
For ρbg = ρ, i.e. m/L → 0, the limit of IL,N actually depends on the precise scaling of m,
which we do not discuss here (see [4] for more details). To capture the sharp transition and
the metastability we will replace the limit (30) by an appropriate scaling limit in Sect. 5.

4.3 Heuristics on Metastability

We can understand the metastability on a heuristic level in terms of a simple current match-
ing argument. IL,N (m) can be calculated efficiently for system sizes L < 4000 using exact
numerics (see (22)). In Fig. 5 we see a clearly defined double well structure close to ρtrans(L)

which accounts for the observed switching behaviour. We may choose φ = 
m(ρbg) instead
of φ = 
(ρbg) in (33) so that the mean under the cut-off grand-canonical distribution is
ρbg. The gradient of IL,N (m) is given by a one step finite difference. If we assume for large
L that νL−1


m(ρbg),m[SL−1/(L − 1) � ρbg] ∼ 1√
2πLσ 2

c

(which is valid in the scaling limit under

certain conditions according to a local limit for triangular arrays (Theorem 1.2 in [11]), see
Theorem 3 for details) and replace m − 1 by m, then a straightforward calculation shows

IL,N (m − 1) − IL,N (m) ≈ 1

L

(
log
m(ρbg) − logg(m)

)
, (38)
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Fig. 6 (Color online) Current matching on a finite system with L = 1000 and ρ = 0.7 close to ρtrans(1000)

for γ = 0.5, b = 4. Left: The current in the background 
m(ρbg) and current out of the maximum g(m)

plotted against ρbg = (N − m)/(L − 1). Right: Exact numerics of IL,N using (22) shown in solid black
and approximation (38) in dashed green. Vertical lines show the correspondence between current matching
and critical points of IL,N . The first local minimum corresponds to the lower stable branch of the current
matching curve in Fig. 4 and the local maximum corresponds to the upper unstable branch

where ρbg = (N −m)/(L−1). The first term on the right hand side follows in direct analogy
with the thermodynamic limit for which ∂ρs(ρ) = − log
(ρ) (cf. [19]), and the second term
is the finite difference of the maximum site contribution using (5).

This result holds rigorously in scaling limit and even for relatively small systems (L ≈
1000) IL,N is well approximated by (38) as is shown in Fig. 6. The approximation breaks
down for background densities close to ρ since the cut off m becomes small and so the
approximation m−1 ≈ m is no longer valid. By the above argument we expect that solutions
to the current matching equation (29) correspond to local maxima or minima of the rate
function. Whilst the current out of the maximum occupied site is greater than the current in
the background we expect the background density to increase and vice versa. Therefore the
first point that the two currents cross is locally stable and so a local minimum of the rate
function. The next point they cross is a local maximum by the same argument, and there is
another local minimum at a point close to ρ associated with fluid configurations, which the
current matching argument predicts to be at the boundary. This is shown in Fig. 6.

5 Rigorous Scaling Limit

In this section we explore the finite size effects by examining the leading order behaviour at
the critical scale on which metastability persists. As L → ∞ this scale is given by

N = ρcL + δρL1−α + o(L1−α)

m = (δρ − δρbg)L
1−α + o(L1−α) for ρbg ∈ [0, δρ)

(39)

for suitable α ∈ (0,1). We may equivalently express it as

N/L = ρc + δρL−α + o(L−α)

N − m

L − 1
= ρc + δρbgL

−α + o(L−α).
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The correct scaling exponent α to capture the canonical overshoot and metastability can be
determined heuristically by our previous current matching argument (29). If we assume that
close to ρc the fluid current equation (28) can be approximated by the first term in the Taylor
expansion around ρc , then (
m(ρbg) − 1) � δρbg

σ 2
c

L−α . The current matching equation (29)
then implies

δρbg

σ 2
c

L−α � g(m) − 1 � b/mγ = b(δρ − δρbg)
−γ L−γ (1−α),

which leads to α = γ

1+γ
. In order to make this argument rigorous, also to find the transition

point and describe the metastability, we study the canonical distribution of the background
density (or equivalently the maximally occupied site) in the scaling limit.

5.1 The Rate Function

We examine the asymptotic behaviour of IL,N (m) introduced in (32). We will see in The-
orem 3 that there exists a unique 1 > β > 0 such that limL→∞ L1−βIL,N (m) is finite and
non-zero at the critical scale, we define

I
(2)
δρ (δρbg) : = limL→∞ L1−βIL,N (m), (40)

where N and m are given by (39). Since Iρ(ρbg) = 0 for ρbg ≥ ρc (see Sect. 4.2) this defini-
tion implies

πL,N [ML = m] ∼ e
−LβI

(2)
δρ (δρbg) (41)

as L → ∞, we recall that if ML = m the background density is N−m
L−1 and δρ and δρbg are

given by (39). We begin by describing the scaling limit for the current in the fluid bulk and
out of the maximally occupied site.

Theorem 2 (Current scaling limits) For the scaling limit (39), with α = γ

1+γ
, the current out

of the most occupied site and the average current in the fluid background are asymptotically
given by

g(m) = 1 + b

(δρ − δρbg)γ
L−α + o(L−α),


m

(
N − m

L − 1

)
= 1 + 1

σ 2
c

δρbgL
−α + o(L−α)

provided 1
σ 2
c
δρbg < b

(1−γ )(δρ−δρbg)γ
.

Proof The result for the current out of the condensate g(m) is immediate since m = (δρ −
δρbg)L

1−α + o(L1−α), g(m) = 1 + bm−γ and (1 − α)γ = α.
The proof of the fluid result follows from a Taylor expansion of the truncated density

function Rm(φ) introduced in (26), details on the expansion are contained in Lemmas 1
and 2 in the Appendix. For convenience we write φ = eμ, then

Rm(eμL−α

) = ρc + σ 2
c μL−α + o(L−α)
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for all μ ∈ [0, b
(1−γ )(δρ−δρbg)γ

). The result follows directly since

eμL−α = 
m

(
Rm(eμL−α

)
)

⇒ 1 + μL−α + o(L−α) = 
m

(
ρc + σ 2

c μL−α + o(L−α)
)

and choosing μ so that σ 2
c μ = δρbg. �

Although the proofs in this section are restricted to 1
σ 2
c
δρbg < b

(1−γ )(δρ−δρbg)
this includes

the point of intersection of the two currents (cf. Fig. 6) and we discuss a possible extension
to the whole region δρbg ∈ (0, δρ) at the end of this Subsection. Theorem 2 states that in
the scaling limit the average current in the fluid background and the jump rate out of the
condensate converge to the critical current φc = 1 on the same scale as the density N/L

converges to ρc. So for N and m at the critical scale, given by (39), (1 − 
m(ρbg))L
α and

(1 − g(m))Lα converge to unique functions of the scaled variables δρ and δρbg. We now
show that in the scaling limit the rate function is exactly the integral of the difference in the
two limiting currents (up to normalisation).

Theorem 3 (Scaling limit rate function) In the scaling limit (39), with α = γ

1+γ
, the rescaled

rate function (40) with β = 1−γ

1+γ
converges as

I
(2)
δρ (δρbg) = lim

L→∞
L1−βIL,N (m)

= δρ2
bg

2σ 2
c

+ b

1 − γ
(δρ − δρbg)

1−γ − inf
r∈(0,δρ)

{
r2

2σ 2
c

+ b

1 − γ
(δρ − r)1−γ

}

provided 1
σ 2
c
δρbg < b

(1−γ )(δρ−δρbg)γ
.

Proof Firstly consider the unnormalised measure

μL,N = Z(L,N)

zL(1)
πL,N , (42)

for which it follows from definitions in Sect. 2.2 and (32)

1

Lβ
logμL,N [ML = m] = −L1−βIL,N (m) + 1

Lβ
logZ(L,N) − L1−β log z(1). (43)

Re-writing IL,N using (33) we find

− 1

Lβ
logμL,N [ML = m] = − (L − 1)

Lβ

(
log zm(
m(ρL

bg)) − ρL
bg log
m(ρL

bg)
)

+ L1−β log z(1) − 1

Lβ
logw(m) − 1

Lβ
logL

− 1

Lβ
logνL−1


m(ρL
bg),m

[
SL−1 = N − m

]−o(1), (44)

where we used the shorthand ρL
bg = (N − m)/(L − 1). By applying Lemma 2, given in the

appendix, the variance under the cut-off distribution ν
m(ρL
bg),m converges to the variance of
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the critical measure for 1
σ 2
c
δρbg < b

(1−γ )(δρ−δρbg)γ
. By the local limit theorem for triangular

arrays (Theorem 1.2 in [11]) we have

νL−1

m(ρL

bg),m

[
SL−1 = N − m

] ∼ 1√
2πLσ 2

c

(45)

since ρL
bg → ρc and Eν


m(ρL
bg),m

[ηx] → ρc as L → ∞ with the scaling (39). So the contribu-

tion of this term to (44) vanishes. Also since β > 0 we have L−β logL → 0 as L → ∞.
The condensate contribution to (44) is given by

1

Lβ
logw(m) � − 1

Lβ

b

1 − γ
(δρ − δρbg)

1−γ L(1−α)(1−γ )

= − b

1 − γ
(δρ − δρbg)

1−γ (46)

where we have used the asymptotic behaviour of the single site weights (see (11)) and (1 −
α)(1 − γ ) = β .

By applying Theorem 2 to 
m(ρL
bg) and taking Taylor expansion of zm according to

Lemma 2 (Appendix),

L1−β
(
ρc + δρbgL

−α
)

log
m(ρc + δρbgL
−α) = δρbg

σ 2
c

Lαρc + δρ2
bg

σ 2
c

+ o(1) (47)

and

L1−β log zm

(

m(ρL

bg)
)

= L1−β log

(
z(1) + δρbg

σ 2
c

L−αz′(1) + δρ2
bg

2σ 4
c

L−2αz′′(1) + o(L−2α)

)
(48)

= L1−β log z(1) + δρbg

σ 2
c

Lαρc + δρ2
bg

2σ 2
c

+ o(1). (49)

since (1 − β) = 2α. Combining (45) to (48) in (44) implies,

− 1

Lβ
logμL,N [ML = m] = δρ2

bg

2σ 2
c

+ b

1 − γ
(δρ − δρbg)

1−γ + o(1) (50)

in the scaling limit (39) as L → ∞, provided 1
σ 2
c
δρbg < b

(1−γ )(δρ−δρbg)γ
.

By definition

Z(L,N) = zL(1)

N∑
m=1

μL,N [ML = m] .

So we may bound Z(L,N) as follows,

zL(1)max
m

{μL,N [ML = m]} ≤ Z(L,N) ≤ NzL(1)max
m

{μL,N [ML = m]}.
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Applying (50) the asymptotic behaviour of L−β logZ(L,N) in the scaling limit is given by

L−β logZ(L,N) = L1−β log z(1) − inf
r∈(0,δρ)

{
r2

2σ 2
c

+ b

1 − γ
(δρ − r)1−γ

}
+ o(1), (51)

provided that the global minimum of − 1
Lβ logμL,N [ML = m] is attained for 1

σ 2
c
δρbg <

b
(1−γ )(δρ−δρbg)γ

in the scaling limit. This follows from results in [3]. Combining (50) and

(51) the result follows from definitions (33) and (42)

L1−βIL,N (ρbg) = δρ2
bg

2σ 2
c

+ b

1 − γ
(δρ − δρbg)

1−γ

− inf
r∈(0,δρ)

{
r2

2σ 2
c

+ b

1 − γ
(δρ − r)1−γ

}
+ o(1). �

The result may break down for 1
σ 2
c
δρbg > b

(1−γ )(δρ−δρbg)γ
due to the large probability of a

second sub-condensate forming on the same scale as the condensate. The conditions under
which this occurs could be found by conditioning on a maximum site occupation and using
the same methods as for Theorem 3 to find the distribution over the second highest occupied
site. By using this method and iterating when necessary, the results here could be extended
to the entire region δρbg ∈ (0, δρ). However our results already cover the relevant critical
points of the rate function, the fluid minimum, condensed minimum and local maximum
that constitutes a potential barrier.

5.2 Current Matching and Overshoot

Theorem 3 together with Theorem 2 imply that in the scaling limit given by (39) the deriv-
ative of the scaling rate function I

(2)
δρ is given by the difference in the current out of the

condensate and the average current in the background. This is made precise in the following
result, which is a rigorous version of the current matching argument of Sect. 4.

Corollary 1 (Current matching)

∂δρbgI
(2)
δρ (δρbg) = δρbg

σ 2
c

− b

(δρ − δρbg)γ
(52)

and the two terms on the right-hand side are exactly the limiting current curves from Theo-
rem 2 above the critical point.

This implies that

∂δρbgI
(2)
δρ (δρbg) → −∞ as δρbg → δρ, (53)

so that I
(2)
δρ always exhibits a boundary minimum at δρbg = δρ.

Depending on the value of δρ the rescaled rate function has one of three qualitative
forms characterised by the number of its extreme points, or equivalently the number of roots
of (52), and the position of the global minimum. With the threshold

c0(γ, b) = 1 + γ

γ

(
σ 2

c γ b
)1/(1+γ )

, (54)
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Fig. 7 (Color online) Scaling limit for γ = 0.5 and b = 4. Left: The thick black line shows the scaling
limit result including metastable branches (dashed). Thin coloured lines show the rescaled canonical currents
from exact numerics, slowly approaching the scaling limit as L increases. The transition point is given by

δρtrans. Right: I
(2)
δρ for various values of δρ. Solid black corresponds to δρ = δρtrans where the depth of the

two local minima are equal. The green dashed-dot-dot curve shows I
(2)
δρ for δρ < c0, blue dot-dashed curve

corresponds to c0 < δρ < δρtrans and red dashed δρ > δρtrans

Equation (52) has no real roots for δρ < c0, exactly one for δρ = c0, and two for δρ > c0.
The latter correspond to a local minimum at δρbg = r0 ∈ (0, δρ) and a local maximum at
δρbg = r∗, with r0 < r∗ (cf. Fig. 7 on the right). As usual, minima of I

(2)
δρ correspond to

metastable phases, and the depth of the local minimum at r0 as compared to the one at the
boundary determines which of the phases is stable (i.e. corresponds to the global minimum).
So c0 marks the threshold above which (for δρ > c0) there exists a metastable condensed
phase. Stability of the phases changes when both minima have the same depth, the density
where this is the case is given by ρtrans(L) introduced in Sect. 3. In the scaling limit (39) this
behaves as

ρtrans(L) = ρc + δρtransL
−α + o(L−α),

and from Theorem 3 and Corollary 1 we get the explicit expression

δρtrans = σ
2

1+γ
c (1 + γ )(2γ )

− γ
1+γ

(
b

1 − γ

) 1
1+γ

. (55)

Note that both c0 and δρtrans are increasing with γ and b. Their ratio simplifies to

δρtrans/c0 = 1

2

( 2

1 − γ

)1/(1+γ )

, (56)

which also increases monotonically with γ . In particular, δρtrans > c0 for all γ > 0 which
implies existence of an extended metastability region.

We can now summarise the critical behaviour of the system at scale (39) in three cases,
which are also illustrated in Fig. 7 (right).

Case 1 (δρ < c0) There exists a unique minimum of the scaling rate function at δρbg = δρ,

I
(2)
δρ (δρ) = 0,
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corresponding to a stable fluid phase. The most likely background density under the canon-
ical measure is S

bg
L /(L − 1) = ρc + δρL−α + o(L−α).

Case 1 (c0 < δρ < δρtrans) There are two local minima of the scaling rate function

I
(2)
δρ (r0) > I

(2)
δρ (δρ) = 0,

corresponding to a stable fluid phase with δρbg = δρ and a metastable condensed phase
with δρbg = r0. The most likely background density under the canonical measure is still
S

bg
L /(L − 1) = ρc + δρL−α + o(L−α).

Case 1 (δρ > δρtrans) There are two local minima of the scaling rate function

I
(2)
δρ (δρ) > I

(2)
δρ (r0) = 0,

corresponding to a metastable fluid phase with δρbg = δρ and a stable condensed phase
with δρbg = r0. The most likely background density under the canonical measure is now
S

bg
L /(L − 1) = ρc + r0L

−α + o(L−α) and a finite fraction of the excess mass condenses on a
single lattice site with m = (δρ − r0)L

1−α + o(L1−α).
The value of δρtrans, and for δρ > δρtrans the position of the global minimum, agree with

recent results on the distribution of the maximum at the critical scale [3]. The expected value
of the maximum site occupation (equivalently background density) under the canonical mea-
sure can be interpreted in terms of the stable solution of the current matching argument as
described above.

Corollary 2 (Canonical current overshoot) Under the conditions of Theorem 3, for δρ <

δρtrans

jL,N − 1 = L−α δρ

σ 2
c

+ o(1) (57)

and for δρ > δρtrans

jL,N − 1 = bL−α

(δρ − r0)
γ + o(1). (58)

Proof Follows directly by expressing jL,N in terms of the ratio of canonical partition func-
tions (10) and applying (51). �

This result is illustrated in Fig. 7 (left). At the transition point δρ = δρtrans we must exam-
ine higher order terms to demonstrate that the system will asymptotically be in a condensed
phase, see [3] and Sect. 6.

6 Estimating the Lifetime of Metastable Phases

Having established the existence of metastable phases we can use our previous results to get
an estimate of their lifetime. Previous studies include results on the dynamics of fluctuations
in a finite system [22] and the dynamics of the condensate [17, 18, 21]. Our approach here
follows mostly the one in [20] where metastability in a different zero-range process has been
studied, and [18] where a random walk argument was used to find the characteristic time of
the motion of the condensate.
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In this section we consider the dynamics in the scaling limit defined by (39). In Sect. 5.2
we have seen that for δρ > c0 the system exhibits two metastable phases, we assume in the
following that we are in this region. So for sufficiently large L we know IL,N (m) exhibits
a local maximum between the fluid and condensed minima. Let m∗ be the local maximum
of IL,N which is well approximated by the closest integer to the largest root of (29) (see
Sect. 4). In the scaling limit N−m∗

L−1 = ρc + r∗L−α (see Sect. 5). We define the metastable fluid
(condensed) phase as all states for which the maximum site occupation is below (above) m∗,
i.e.

πfluid
L,N := πL,N [·|ML(η) ≤ m∗]

π cond
L,N := πL,N [·|ML(η) > m∗].

(59)

Since the process spends very little time close to the maximum of IL,N , the precise choice of
m∗ is not relevant for results in the scaling limit (cf. also [7] for a slightly different approach).
The lifetimes of the two metastable phases can be expressed in terms of the following hitting
time,

τL := inf
{
t ≥ 0 : ML(η(t)) = m∗} .

We take

Tfluid := 2Eπfluid
L,N

eLt [τL] and Tcond := 2Eπcond
L,N

eLt [τL], (60)

where the expectation is with respect to the dynamics equation (2) with initial distribution
given by πfluid

N,L or π cond
N,L . The factor of 2 comes from the fact that once m∗ is reached the

process can still return to the same metastable phase with probability 1/2.
By ergodicity of the process (η(t) : t ≥ 0) on �L,N the ratio of lifetimes is directly related

to the stationary distribution,

Tfluid

Tcond
= πL,N [ML(η) ≤ m∗]

πL,N [ML(η) > m∗] =
∑m∗

k=0 e−LIL,N (k)∑N

k=m∗+1 e−LIL,N (k)
. (61)

Applying the scaling limit result of Theorem 3, we get for large L

Tfluid

Tcond
�

∫ δρ

r∗
e

−LβI
(2)
δρ (x) dx

(∫ r∗

0
e

−LβI
(2)
δρ (x) dx

)−1

�
�(1 + 1

1−γ
)(

1−γ

b
)

1
1−γ

√
∂2

x I
(2)
δρ (r0)√

2πL
e

−Lβ(I
(2)
δρ (δρ)−I

(2)
δρ (r0))

, (62)

where the second line follows by a saddle point approximation of the denominator at the
local minimum r0 that corresponds to condensed configurations, and by expanding I

(2)
δρ (x)

in the numerator at the boundary minimum (corresponding to fluid configurations), keeping
the leading order singular term. To leading order in the exponent this result implies that the
ratio of the lifetimes is given by the relative depth of the minima, as expected. The lower
order term

√
L in the denominator implies that at the transition density δρtrans in the scaling

limit the condensed phase is stable and the fluid phase is metastable, in accordance with
results in [3]. However the scaling with L is difficult to verify in Monte Carlo simulations,
since system sizes have to be relatively small (at most of the order of L = 1000) to get good
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statistics on switching times. In this regime higher order finite size effects still play a role
and can affect the location of ρtrans(L) and therefore the relative depth of the minima of IL,N .

We estimate the two lifetimes by approximating the number of particles in the condensate
by a continuous time random walk. Since it is difficult to validate the scaling with L, as
discussed above, we will demonstrate the validity of our approach by estimating the lifetimes
directly for finite systems. The actual lifetimes are not only related to the potential barrier
given by the maximum of IL,N , but also depend on the underlying dynamics. The occupation
of the maximum

(
ML(η(t)) : t ≥ 0

)
is a non-Markovian, stationary, ergodic process with

state space �∗ = {�N/L�, �N/L� + 1, . . . ,m∗,m∗ + 1, . . . ,N} and stationary distribution
π∗(m) = e−LIL,N (m). Since the process exhibits only single steps, it can be approximated
by a continuous time random walk on �∗ (the validity of this Markovian assumption is
discussed later) where a particle leaves the maximum (m → m − 1) with rate g(m). The
rates corresponding to m → m + 1 are then fixed by the stationary distribution π∗. In the
scaling limit this implies that particles enter the condensate with rate given by the current in
the background, see Corollary 1. The lifetime of the metastable fluid phase is approximated
by the mean first passage time of the random walk starting in state �N/L� to reach m∗.
For the metastable condensed phase it is given by the mean first passage time starting at N ,
and both have a factor of 2 in front due to the possibility of reaching m∗ and not actually
switching phase. These can be calculated using standard techniques (see e.g. [33] for the
discrete time analog),

Tfluid ≈ 2
m∗∑

i=�N/L�+1

π∗(i − 1)

g(i)π∗(i)
+ 2

m∗∑
i=�N/L�+2

1

g(i)π∗(i)

i−2∑
j=�N/L�

π∗(j)

Tcond ≈ 2
N∑

i=m∗+1

1

g(i)
+ 2

N∑
i=m∗+1

1

g(i)π∗(i)

N∑
j=i−1

π∗(j).

(63)

These two approximations can be calculated numerically for reasonably large systems (up
to L ≈ 4000) since we can calculate π∗(m) = e−LIL,N (m) exactly using (22). Applying the
scaling limit result and using saddle point approximations we recover an Arrhenius estimate
with a prefactor for the lifetime of the two metastable phases,

Tfluid ≈ 2
∫ δρ

r∗
e

LβI
(2)
δρ (x)

∫ δρ

x

e
−LβI

(2)
δρ (y) dy dx

≈ �

(
1 + 1

1 − γ

)(
b

1 − γ

) −1
1−γ

√
2πL

∂2
r I

(2)
δρ (r∗)

e
Lβ(I

(2)
δρ (r∗)−I

(2)
δρ (δρ))

Tcond ≈ 2
∫ r∗

0
e

LβI
(2)
δρ (x)

∫ x

0
e

−LβI
(2)
δρ (y) dy dx

≈ 2πL√
∂2

r I
(2)
δρ (r∗)∂2

r I
(2)
δρ (r0)

e
Lβ(I

(2)
δρ (r∗)−I

(2)
δρ (r0))

.

(64)

Here r∗ is the location of the local maximum of the rate function, r0 is the local minimum
corresponding to condensed configurations and δρ is the boundary minimum corresponding
to fluid configurations. To leading order the lifetime of the metastable fluid (condensed)
phase is given by the height of the local maximum of the rate function (potential barrier)
above the fluid (condensed) minimum. This result agrees with the ratio of the lifetimes
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Table 1 Lifetime of metastable phases for L = 1000 and N = 695, with γ = 0.5 and b = 4. Using approx-
imation (63) compared to measurements from Monte Carlo simulations on a fully connected lattice (MF), a
one dimensional lattice with p = 1 and with p = 3/4

Approx. (63) MF 1D p = 1 1D p = 3/4

Tfluid 1.61 × 105 1.65 × 105 1.21 × 105 2.05 × 105

Tcond 1.51 × 105 1.52 × 105 1.07 × 105 1.94 × 105

already discussed. However as with the previous results the asymptotic form is difficult to
validate due to higher order finite size effects, the exact expression (63) is therefore more
appropriate for relevant system sizes.

We expect the above random walk approximation to be accurate if particles exiting the
maximum equilibrate in the bulk before returning to the condensate. This condition is best
fulfilled for a fully connected lattice (mean-field geometry) and we expect it to be a rea-
sonably good approximation for one dimensional totally asymmetric systems since parti-
cles have to pass through the whole fluid bulk before returning. For partial asymmetry and
in higher dimensions a return without penetrating the fluid bulk is possible. To a first ap-
proximation the lifetimes have to be multiplied by the inverse probability of the event that
particles escape into the bulk, since only such particles have a chance to equilibrate and
contribute on the right scale. This pre-factor can be estimated using another random walk
argument. If a particle jumps to the right with probability p and to the left with probability q

where p + q = 1 and p �= 1/2 then the probability of a particle reaching some macroscopic
distance before returning to the condensate is asymptotically |p − q|. We therefore expect
the lifetime to increase by a factor of 1/|p − q| for partial asymmetry. As a special case, for
symmetric systems in one dimension this leads to an increase of lifetimes by a factor of L

by the same argument. For a detailed investigation and validation of this Markovian ansatz
see [18]. We find that this argument gives a good approximation for fully connected lattices,
and totally asymmetric jumps in one dimension, see Table 1. We observe that the one di-
mensional totally asymmetric case is a factor of approximately 1.4 faster than the mean-field
case, which is due to internal structure in the fluid background, and has also been observed
and discussed in [18]. For partial asymmetry in one dimension with p = 3/4 the process
is slower than the totally asymmetric case by a factor of approximately 1.8 supporting the
arguments above which predict an increase by a factor of 2.

The characteristic time for the motion of the condensate in the thermodynamic limit,
N/L → ρ > ρc , can be approximated by considering (39) with a sequence of δρ increasing
like Lα . The corresponding rescaled location of the condensed minimum r0 → 0, since the
condensed phase has limiting background density ρc . Our rigorous results do not technically
hold in this limit, however our estimates of the lifetimes of the metastable phases agree
with the characteristic times found by Godreche and Luck [17, 18]. Our results demonstrate
that close to the transition point in finite systems (i.e. δρ ≈ δρtrans) the condensate typically
moves via the system entering the fluid phase (cf. Fig. 3), and therefore its new position is
expected to be chosen uniformly at random on �L. For δρ large, however, the lifetime of
the fluid phase becomes small and the condensate can re-locate whilst the system remains in
the condensed phase, via the mechanism described in [18]. A sub-condensate starts to grow
in the fluid bulk, and the potential barrier the process has to cross for condensate motion is
associated with the probability of the excess mass shared equally between two sites. This
is the relevant mechanism in the thermodynamic limit. For finite systems one can estimate
which of these re-location processes dominates, by considering the distribution of the second
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largest site using the same techniques as in the previous section. It has recently been shown
that the second mechanism via a sub-condensate can lead to a non-uniform relocation of the
condensate [6].

7 Discussion

We have shown that a prototypical class of zero-range processes, that are known to undergo
a condensation transition, exhibit large finite size effects including a metastable switching
phenomenon for a large range of system parameters. We have characterized this behaviour
using the background density as an order parameter, by rigorously deriving a large devia-
tion rate function for its distribution in an appropriate scaling limit, which shows a double
well structure. These results agree with recent work on the zero-range process at the criti-
cal scale [3], which we extend by establishing metastable fluid and condensed phases. Our
methods give rise to a simple interpretation of these results in terms of a stationary current
balance between the fluid background and the condensate. All results presented here, except
those in Sect. 6, concern properties of the canonical stationary distribution and are therefore
independent of the geometry or dimension of the lattice, so long as it permits homogeneous
stationary distributions.

Our results allow us to estimate the lifetime of the two metastable phases using a heuristic
random walk argument. The estimates agree with previous studies of the dynamics of the
condensate in the thermodynamic limit [18]. We show that in the critical scaling limit the
lifetime of the two phases is growing with system size (as a stretched exponential) and
derive the appropriate Arrhenius law including prefactor. We have also demonstrated that
on finite systems the re-location dynamics of the condensate is dominated by switching to
the metastable fluid phase for a large parameter range, rather than the mechanism via a
second sub-condensate assumed in previous results, which is relevant in the thermodynamic
limit.

The zero-range process provides an interesting example where the thermodynamic limit
fails to capture essential parts of the dynamics, and contradicts the usual expectation that
finite systems should behave in a smoother fashion than the limiting prediction. Although
the aim of this paper is not to discuss particular applications in detail, the finite size effects
described here are particularly important for a proper understanding of various real con-
densation phenomena. To name two relevant examples, the condensing zero-range process
has recently been applied as a simplified traffic model as well as to describe clustering phe-
nomena in granular media [28, 30, 37, 39]. Both of these applications exhibit metastability
phenomena, and typical system sizes are of order 102–103, the region where metastability
effects in our analysis are most relevant. Since our results hold for a large generic class of
zero-range models, they suggest that the apparent metastability in many applications is not
necessarily the result of a particular choice of the jump rates, but rather a generic finite size
phenomenon. While the results in the scaling limit hold for all zero-range processes with the
same tail behaviour as the rates (1), the strength of the effect for relevant system sizes will
of course depend on the details of the particular application. Traffic modelling is an exam-
ple where metastability is particularly pronounced [41], and it is an interesting question to
investigate in detail the applicability of the zero-range process and our results in that area.

Using the methods discussed in this paper, a direct application of the findings in [3]
allows us to extend our results on the current overshoot to zero-range processes with rates
(1) where γ = 1 and b > 3, see Fig. 8. The critical scale in this case turns out to be of order√

L/ logL, and the system also shows a discontinuous current overshoot in the scaling limit.
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Fig. 8 (Color online) The
current overshoot in the scaling
limit for γ = 1 and b = 4. The
thick black line shows the scaling
limit result and the rescaled
canonical currents are shown for
various system sizes by thin
coloured lines, they slowly
approaching the scaling limit as
L increases. The transition point
is given by c0(γ, b) which is
given in [3]

However, as can be seen in Fig. 8, convergence is very slow and there are no metastable
phases on the critical scale. Although metastability might occur on higher order scales, it
will hardly be relevant in any finite size simulation or application.

The scaling limit rate function in Theorem 3 could also be derived using a slightly modi-
fied version of the saddle point methods applied in [14, 15, 32]. However, the direct approxi-
mation of the fluid and condensed metastable phases used in this paper seems more intuitive
for our purpose, and can be made rigorous with less effort than a saddle point computation.
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Appendix

A.1 A Formula for IL,N

In (32) we introduce IL,N (m) = − 1
L

logπL,N [ML = m] for the canonical probability that
the maximum site occupation is m. The following upper bound over counts configurations
in which more than one site contains m particles

πL,N [ML = m] ≤ Lw(m)
∑

η∈X̂

∏L−1
x=1 w(ηx)

Z(L,N)
, (65)

where X̂ = {η : η1, . . . , ηL−1 ≤ m,
∑L−1

x=1 ηx = N − m}. The following lower bound does not
count any configurations in which more than one site contains m particles,

πL,N [ML = m] ≥ Lw(m)
∑

η∈X̌

∏L−1
x=1 w(ηx)

Z(L,N)
, (66)

where X̌ = {η : η1, . . . , ηL−1 ≤ m − 1,
∑L−1

x=1 ηx = N − m}. It follows that

πL,N [ML = m] = Lw(m)
∑

η∈X̂

∏L−1
x=1 w(ηx)

Z(L,N)

(
1 − O(Le

− −b
1−γ

m1−γ

)
)

(67)
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as L,m → ∞. We may write the last term in the numerator in terms of the cut-off grand
canonical measure and get

πL,N [ML = m]

= Lw(m)zL−1
m (φ)φ−(N−m)νL−1

φ,m [SL−1 = N − m]
Z(L,N)

(
1−O(Le

− −b
1−γ

m1−γ

)
)

, (68)

which holds for all φ ∈ (0,∞) (cf. Sect. 4.1). Finally, taking logarithm,

− 1

L
logπL,N [ML = m] = − (L − 1)

L

(
log zm(φ) − N − m

L − 1
logφ

)

− 1

L
logw(m) + 1

L
logZ(L,N) − 1

L
logL

− 1

L
logνL−1

φ,m [SL−1 = N − m]+O(e
− −b

1−γ
m1−γ

). (69)

A.2 Convergence of Moments under the Cut-off Ensemble

Lemma 1 Consider two sequences mn ∈ N, μn ∈ (0,∞), such that mn → ∞, μn → 0 and
m

γ
nμn → C as n → ∞ with C ∈ [0, b

1−γ
). Then for each i ∈ N0

lim sup
n→∞

∑
k≤mn

kiw(k)eμnk < ∞.

Proof From the asymptotic behaviour of w(k) (11) we know there exists a C0 ∈ (0,∞) such

that w(k) ≤ C0e
−b

1−γ
k1−γ

for all k. So,

∑
k≤mn

kiw(k)eμnk ≤ C0

∑
k≤mn

kie
−b

1−γ
k1−γ +μnk

. (70)

Fix 0 ≤ ε < ( b
1−γ

− C). Then there exists n̄ ∈ N such that μn ≤ (C + ε)m
−γ
n for n ≥ n̄. It

follows that μn ≤ (C + ε)k−γ for all k ≤ mn and n ≥ n̄. By applying this upper bound on
μn we can bound the sum above uniformly in n > n̄ as follows,

∑
k≤mn

kiw(k)eμnk ≤ C0
∑

k≤mn
kie

−b
1−γ

k1−γ +(C+ε)k1−γ

≤ ∫ ∞
0 xie

−b
1−γ

x1−γ +(C+ε)x1−γ

< ∞. (71)

�

Lemma 2 Under the assumptions of Lemma 1 we may bound the remainder in the Taylor
expansion of each moment of the cut-off measure νφn,mn introduced in (23). Writing φn = eμn

we have

zmn(e
μn) = z(1) + z′(1)μn + o(μn),

Rmn(e
μn) = ρc + σ 2

c μn + o(μn),

and Eνμn,mn
[ηi

1] = Eνμc
[ηi

1] + μn∂μEνμc
[ηi

1] + o(μn).
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Proof For each n ∈ N the i th moment of the cut-off ensemble νφn,mn is given by a finite sum.
We let,

fmn(μ) =
∑
k≤mn

kiw(k)eμk. (72)

then fmn ∈ C∞(R+,R+). By Taylors theorem expanding around μ = 0,

fmn(μn) = fmn(0) + f ′
mn

(0)μn + hn(μn),

where the remainder term may be expressed as

hn(μn) = f (2)
mn

(s)

2
μ2

n for some s ∈ [0,μn].

f (2)
mn

is non-negative and increasing and so the remainder is bounded by

0 ≤ hn(μn) ≤ f (2)
mn

(μn)

2
μ2

n.

By Lemma 1, we know that there exists U > 0 such that f (2)
mn

(eμn) ≤ U for all n ∈ N. It
follows that,

fmn(e
μn) = fmn(1) + f ′

mn
(1)μn + o(μn).

The result then follows by considering |f∞(1) − fmn(1)| ∼ ∑
k>mn

kie
−b

1−γ
k1−γ +μnk which is

o(μn) since μnm
γ
n → C, so the tail of the sum converges as a stretched exponential, this

allows us to replace the expected values under the cut-off with μ = 0 with the expected
values under the true critical measure. �
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